Темные светила: коричневые карлики. Открыт коричневый карлик комнатной температуры Что такое коричневый карлик

💖 Нравится? Поделись с друзьями ссылкой

Коричневый карлик в изображении художника

Коричневые или бурые карлики («субзвёзды» или «химические звёзды») - субзвёздные объекты (с массами в диапазоне от 0,012 до 0,0767 массы , или, соответственно, от 12,57 до 80,35 массы ). Так же как и в звёздах, в них идут термоядерные реакции ядерного синтеза на ядрах лёгких элементов (дейтерия, лития, бериллия, бора), но, в отличие от главной последовательности, вклад в тепловыделение таких звёзд ядерной реакции слияния ядер водорода (протонов) незначителен, и, после исчерпания запасов ядер лёгких элементов, термоядерные реакции в их недрах прекращаются, после чего они относительно быстро остывают, превращаясь в планетоподобные объекты, то есть такие звёзды никогда не находятся на главной последовательности Герцшпрунга - Рассела. В коричневых карликах, в отличие от звёзд главной последовательности, также отсутствуют шаровые слои лучистого переноса энергии - теплоперенос в них осуществляется только за счёт турбулентной конвекции, что обуславливает однородность их химического состава по глубине.

Коричневый карлик (меньший объект) вращающийся вокруг звезды Gliese 229, которая расположена в созвездии Зайца около 19 световых лет от . Коричневый карлик Gliese 229B имеет массу от 20 до 75 масс Юпитера.

Коричневые карлики были первоначально названы чёрными карликами, и классифицировались как тёмные субзвёздные объекты, свободно плавающие в космическом пространстве и имеющие слишком малую массу, чтобы поддерживать стабильную термоядерную реакцию. В настоящее время понятие чёрный карлик имеет совсем другое значение.

В ранних моделях строения звёзд считалось, что для протекания термоядерных реакций масса звезды должна быть хотя бы в 80 раз больше массы Юпитера (или 0,08 массы Солнца). Гипотеза о существовании плотных звездоподобных объектов с массой меньше указанной (коричневые карлики) была выдвинута в начале 1960-х годов. Считалось, что образование их протекает во многом подобно образованию обычных звёзд, но обнаружить их очень сложно, так как они практически не испускают видимого света. Наиболее сильное излучение коричневых карликов наблюдается в инфракрасном диапазоне.

Но на протяжении нескольких десятилетий наземные телескопы, работающие в этом диапазоне, имели слишком низкую чувствительность и поэтому были неспособны обнаружить коричневые карлики. Позднее было выдвинуто предположение, что в зависимости от компонентов, участвующих в формировании звезды, критическая масса, необходимая для протекания такого же, как и в обычной звезде, термоядерного синтеза гелия с участием водорода, составляет 75 масс Юпитера. Субзвёздные объекты, достаточно быстро сформировавшиеся сжатием туманности, могут иметь массу меньше 13 масс Юпитера. В них вообще исключено протекание каких-либо термоядерных реакций.

С 1995 года, когда было впервые подтверждено существование коричневого карлика, было найдено более сотни подобных объектов. Считается, что они составляют большинство космических объектов в Млечном Пути. Самые близкие из них к Земле - два карлика в системе Луман 16, находящиеся на расстоянии 6,5 световых лет от Солнца в созвездии Паруса, одиночный карлик WISE 1506+7027 в созвездии Малая Медведица (11,1 св. лет), обращающиеся друг вокруг друга компоненты B и C в тройной системе ε Индейца (12 св. лет), коричневый карлик в двойной системе SCR 1845-6357 в созвездии Павлина (12,6 св. лет) и UGPS 0722-05 в созвездии Единорога (13,4 св. лет).

В 2006 году, при наблюдении за зоной интенсивного звёздообразования в Туманности Ориона, впервые удалось непосредственно измерить массы двух коричневых карликов в затменно-переменной двойной системе Гевелий 240, которые оказались равны 5,5 % и 3,5 % от массы Солнца.

Сравнительные размеры коричневых карликов Глизе 229B и Тейде 1 с Юпитером и Солнцем.

Литий: Коричневые карлики, в отличие от звёзд с малой массой, содержат литий. Это происходит из-за того, что звёзды, имеющие достаточную для термоядерных реакций температуру, быстро исчерпывают свои первоначальные запасы лития. При столкновении ядра лития-7 и свободного протона образуются два ядра гелия-4. Температура, необходимая для этой реакции, немного ниже, чем температура, при которой возможен термоядерный синтез с участием водорода. Конвекция в звёздах является причиной полного истощения запасов лития, который из холодных наружных слоёв постепенно попадает в горячие внутренние и там сгорает. Следовательно, наличие литиевых линий в спектрах кандидатов на коричневые карлики является хорошим признаком их субзвёздной структуры. Такой подход к различению коричневых карликов и звёзд с малой массой впервые был предложен Рафаэлем Реболо и его коллегами и получил название «литиевый тест».

В то же время, литий присутствует в составе очень молодых звёзд, не успевших ещё сжечь его. Более тяжёлые звёзды, такие как наше Солнце, содержат литий в верхних слоях атмосферы, которые слишком холодны для реакций с его участием. Но такие звёзды легко отличимы от коричневых карликов по размеру. С другой стороны, тяжёлые коричневые карлики (порядка 65-80 M_J) способны истощить запасы лития в начальные периоды своей жизни, то есть примерно за полмиллиарда лет. Таким образом, «литиевый тест» не совершенен.

Метан: В отличие от звёзд, некоторые коричневые карлики на заключительном периоде своего существования достаточно холодны, чтобы за долгое время накопить в своей атмосфере обозримое количество метана. Примером может служить Gliese 229.

Яркость: Звёзды главной последовательности, остывая, в конечном итоге достигают минимальной яркости, которую они могут поддерживать стабильными термоядерными реакциями. Это значение яркости в среднем составляет минимум 0,01 % яркости Солнца. Коричневые карлики остывают и тускнеют постепенно на протяжении своего жизненного цикла. Достаточно старые карлики становятся слишком тусклыми, чтобы считаться звёздами.

Отличительным свойством коричневых карликов является то, что они имеют радиус, приблизительно равный радиусу Юпитера. В массивных коричневых карликах (60-80 M_J) определяющую роль, как и в белых карликах, играет давление вырожденного электронного газа (ферми-газа). Объём лёгких коричневых карликов (1-10 M_J) определяется действием закона Кулона. Результатом всего этого является то, что радиусы коричневых карликов различаются всего на 10-15 % для всего диапазона масс. Из-за этого отличить их от планет достаточно трудно.

Кроме того, многие коричневые карлики не способны поддерживать термоядерные реакции. Лёгкие (до 13 M_J) - слишком холодны и в них невозможны даже реакции с участием дейтерия, а тяжёлые (более 60 M_J) остывают слишком быстро (приблизительно за 10 миллионов лет) и тем самым теряют способность к термоядерному синтезу. Но всё же существуют способы отличить коричневый карлик от планеты:

Измерение плотности. Все коричневые карлики имеют приблизительно одинаковый радиус и объём. Следовательно, объект с массой более 10 M_J скорее всего не является планетой.

Наличие рентгеновского и инфракрасного излучения. Некоторые коричневые карлики излучают в рентгеновском диапазоне. Все «тёплые» карлики излучают в красном и инфракрасном диапазонах, пока не остынут до температуры, сопоставимой с планетарной (до 1000 K).

Один из механизмов происхождения коричневых карликов схож с планетарным. Коричневый карлик формируется в протопланетном диске на его окраине. На следующем этапе их жизни они под воздействием окружающих звёзд выбрасываются в окружающее пространство их родительской звезды и образуют большую популяцию самостоятельных объектов.

В отличие от звёзд главной последовательности, минимальная температура поверхности которых составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. В отличие от звёзд, которые сами себя разогревают за счёт внутреннего синтеза, коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Свойства коричневых карликов, переходных между планетами и звёздами по массам, вызывают особый интерес астрономов. Год спустя после открытия первого объекта этого класса в атмосферах коричневых карликов были обнаружены погодные явления. Выяснилось, что коричневые карлики также могут иметь собственные спутники.

Коронографы. Часто используются для обнаружения наиболее тусклых объектов на фоне ярких видимых звёзд, включая Gliese 229B.

Сенсорные телескопы, оснащённые ПЗС-матрицей, используются для поиска тусклых объектов в удалённых звёздных скоплениях, таких как Teide 1.

Широкопольные искатели позволяют обнаруживать одиночные тусклые объекты, такие как Kelu-1 (расстояние - 30 световых лет).

1995 год. Обнаружен первый коричневый карлик. Тейде 1, объект спектрального класса M8 в скоплении Плеяд, был идентифицирован с помощью ПЗС-камеры в Испанской обсерватории Роке-де-лос-Мучачос Канарского института астрофизики. Обнаружен первый метановый карлик Глизе 229B, вращающийся вокруг красного карлика Глизе 229A (20 световых лет от Солнца). Обнаружение было выполнено с использованием адаптивной (самонастраивающейся) оптики, позволяющей улучшить качество снимков, сделанных при помощи полутораметрового рефлектора в Паломарской обсерватории в южной Калифорнии. Последующая инфракрасная спектроскопия, выполненная 5-метровым телескопом Хейла, показала изобилие метана в составе карлика.

1998 год. Обнаружен первый коричневый карлик, излучающий рентгеновские лучи. Cha Halpha 1, объект спектрального класса M8 в тёмном облаке Хамелеон I, классифицирован как источник рентгеновского излучения схожий с конвективными звёздами позднего типа.

15 декабря 1999 года. Зафиксирована первая вспышка коричневого карлика в рентгеновском диапазоне. Группа учёных Университета Калифорнии при помощи телескопа Чандра наблюдала 2-часовую вспышку объекта LP 944-020 (60 M_J, 16 световых лет от Солнца).

27 июля 2000 года. Зафиксировано первое излучение коричневого карлика в радиодиапазоне (дискретное и непрерывное). Наблюдения за объектом LP 944-020 производились группой студентов при помощи Очень большого массива радиотелескопов и их результаты были опубликованы в британском журнале Nature.

Астероидный диск вокруг коричневого карлика. Вид с гипотетической планеты с расстояния около 3 млн километров.

Последние наблюдения за известными коричневыми карликами выявили некоторые закономерности в усилении и ослаблении излучения в инфракрасном диапазоне. Это наталкивает на мысль о том, что коричневые карлики затянуты относительно холодными, непрозрачными облаками, скрывающими горячую внутреннюю область. Считается, что эти облака находятся в постоянном движении из-за сильных ветров, гораздо более сильных, чем известные штормы на Юпитере.

Рентгеновские вспышки, зафиксированные в 1999 году свидетельствуют о наличии у коричневых карликов изменяющихся магнитных полей, схожих с магнитными полями лёгких звёзд.

В 2005 году в созвездии Хамелеона в регионе звёздообразования Chameleon I, были обнаружены коричневые карлики, у которых было подтверждено наличие аккреционного диска, что является характерным для молодых звёзд. При помощи данных космического телескопа Спицер, Хаббл и наземного телескопа в этом регионе обнаружен коричневый карлик Cha 110913-773444. Объект расположен на расстоянии в 500 световых лет от Солнца и может находиться в процессе формирования мини-солнечной системы. Астрономы из Университета Пенсильвании обнаружили нечто схожее с диском газа и пыли, сильно напоминающий протопланетный диск, из которого, как считается, образовалась наша . Cha 110913-773444 - самый маленький из известных на сегодняшний день коричневых карликов (8+7−3 M_J). Кроме того, если он на самом деле сформировал планетарную систему, то он будет самым маленьким известным объектом, имеющим подобную систему.

Коричневые карлики, несмотря на то, что неспособны поддерживать термоядерные реакции в течение миллионов или миллиардов лет так, как это делают звёзды, в какой-то момент жизни всё же это делают. Температура поверхности коричневых карликов варьирует в зависимости от массы и возраста коричневого карлика от планетной до температуры звёзд нижнего класса класса M. Поэтому для коричневых карликов были выделены специальные спектральные классы: L и T. В качестве теории выделялся ещё более холодный спектральный класс Y, позднее были обнаружен ряд объектов, соответствующих этому классу. Спектральный класс коричневых карликов постепенно сдвигается в сторону более холодного: коричневые карлики остывают, причём чем более массивен коричневый карлик, тем медленнее он остывает.

Массивные коричневые карлики, близкие к красным карликам, на ранних стадиях после формирования могут иметь спектральный класс, начиная с M6.5 и позднее. Постепенно, как правило, они остывают, переходя в класс L.

Художественное изображение L-карлика.

Главной особенностью спектрального класса M, самого холодного спектрального класса звёзд главной последовательности, является наличие полос поглощения таких соединений, как оксид титана (II) и оксид ванадия (II). Тем не менее после обнаружения коричневого карлика GD 165 B, который, в свою очередь, вращается вокруг белого карлика GD 165 A, было установлено, что спектр его не имеет в себе линий поглощения данных соединений. Последующие исследования спектра дали возможность выделить новый спектральный класс L. В плане спектральных линий он совсем не похож на M. В красном оптическом спектре линии оксидов титана и ванадия всё ещё были сильны, но также были и сильные линии гидридов металлов, например FeH, CrH, MgH, CaH. Также были сильные линии щелочных металлов и йода.

По данным на апрель 2005 года, было обнаружено уже свыше 400 карликов класса L.

Художественное изображение T-карлика

GD 165 B является прототипом L-карликов. Аналогично, коричневый карлик Глизе 229 B является прототипом второго нового спектрального класса, который назвали T-карликом. В то время как в ближнем инфракрасном (БИК) диапазоне спектра L-карликов преобладают полосы поглощения воды и монооксида углерода (CO), в БИК-спектре Глизе 229 B доминируют полосы метана (CH4). Подобные характеристики до этого вне Земли были обнаружены только у газовых гигантов Солнечной системы и спутника Сатурна Титана. В красной части спектра вместо полос FeH и CrH, характерных для L-карликов, наблюдаются спектры щелочных металлов - натрия и калия.

Эти различия позволили ввести отдельный спектральный класс T, в первую очередь на основе линий метана. Из-за наличия метана в составе звезды этот класс также называют иногда «метановыми карликами».

Согласно теории, L-карликами могут являться очень маломассивные звёзды и массивные коричневые карлики. T-карликами могут являться только сравнительно маломассивные коричневые карлики. Масса T-карлика обычно не превышает 7 % от массы Солнца или 70 масс Юпитера. По своим свойствам карлики класса T схожи с газовыми планетами-гигантами. Температура их поверхности составляет порядка 700-1300 К. На ноябрь 2010 года обнаружено порядка 200 коричневых карликов спектрального класса T.

Благодаря влиянию спектра молекулярных соединений и спектров натрия и калия, которые сильно выделяют также зелёную часть спектра T-карликов, наблюдатель бы увидел такой объект не бурым, а скорее розовато-синим. В ноябре 2010 года была впервые обнаружена двойная система, состоящая из «метанового карлика» ULAS 1459+0857 и белого карлика LSPM 1459+0857.

Художественное изображение Y-карлика WISE 1828+2650.

Спектральный класс Y – этот спектральный класс долгое время существовал только в теории. Он был смоделирован для ультра-холодных коричневых карликов. Температура поверхности коричневых карликов теоретически должна была быть ниже 700 K (или 400 °C), что делало такие коричневые карлики невидимыми в оптическом диапазоне, а также существенно более холодными, чем «горячие юпитеры».

В 2011 году группа американских учёных заявила об обнаружении коричневого карлика с температурой поверхности 97±40 °C. Но данные о CFBDSIR 1458+10 B пока не напечатаны в рецензируемом журнале.

Другие холодные коричневые карлики: (CFBDS J005910.90-011401.3, ULAS J133553.45+113005.2 и ULAS J003402.77−005206.7) имеют температуру поверхности 500-600 К (200-300 °C) и относятся к спектральному классу Т9. Спектр их поглощения - на уровне длины волны в 1,55 мкм (инфракрасная область).

В августе 2011 года американские астрономы сообщили об открытии семи ультрахолодных коричневых карликов, эффективные температуры которых лежат в диапазоне 300-500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3. Из них только WISE J0148−7202, был отнесён к классу Т9.5, а остальные - Y классу. Температура WISE J1828+2650 ~ 25 °C, а коричневый карлик WISE 1541-2250, находящийся в 9 световых годах от Солнца (2,8+1,3−0,6 парсек), может отодвинуть красный карлик Ross 154 с седьмого на восьмое место в списке ближайших с Солнцу звёздных систем.

Основным критерием, который отделяет спектральный класс Т от Y, считается наличие полос поглощения аммиака в спектре. Однако сложно идентифицировать, есть ли там эти полосы или нет, так как поглощать могут также такие вещества как метан и вода.

2M1207 - первый из обнаруженных коричневых карликов

OTS 44 - самый маленький коричневый карлик, являющийся центром газопылевого облака (более лёгкие газовые объекты уже относятся к классу планемо или экзопланет).

WISE 1828+2650 - самый холодный из известных коричневых карликов. Его температура - всего 25 °C.

Дэвид Уилкок только что выпустил короткое сообщение, в котором он признается, что теперь верит, что наша Солнечная система, на самом деле, является двойной звездной системой. Если это правда, то значит, что у нашего Солнца есть звезда-компаньон. По Уилкоку, эта другая звезда — коричневый карлик.

Вы можете подумать, если наша солнечная система состоит из двух звезд, то почему мы не видим другую? Хороший вопрос. Ответ заключается в объяснении, что эта звезда-компаньон является коричневым карликом. Это своего рода звезда. Либо она никогда не получала необходимой массы, чтобы зажечь ядерные реакции синтеза и стать обычной звездой, в нашем понимании. Либо она дошла до такой точки, когда термоядерная реакция прекратилась. Коричневые карлики стали описывать недавно, и обычно их сравнивают с Юпитером, и наука в настоящее время обсуждает, следует ли проводить различие между карликовыми звездами и газовыми гигантами.

Две звезды, чтобы быть частью двойной системы, должны вращаться вокруг общего центра тяжести — точки гравитационного равновесия между ними. По-видимому, именно такой сценарий мог бы объяснить некоторые аномалии во внешней части нашей Солнечной системы, которые ученым было всегда сложно объяснять! И если есть коричневый карлик, звезда-компаньон, мы, очевидно, не увидим его, потому что он не горит.

«Мягкое» раскрытие

Знаете ли вы, что астрономы, ученые считают, что наиболее видимые звездные системы являются бинарными? Многие ли это знали. Но в последнее время стало заметно, что многие статьи касаются темы бинарных систем. Соедините это с объявлением, что телескоп НАСА Кеплер показал, что большинство звездных систем, вероятно, имеют планеты, и аргументом будет то, что мы наблюдаем своего рода «мягкое раскрытие» реальности, уже известной элите нашей планеты.
В ходе исследований по этой теме, стало известно, что ученые объявили в этом году, что созвездие Mizar (сообщение Lake Afton Public Observatory) на самом деле не просто двоичная система, а содержит шесть звезд!

Еще одна интересная история, связанная с нашей парной звездой, – появление мема о втором Солнце на YouTube. Многие видео, якобы от всяких разных людей со всех уголков планеты, показывают второй яркий объект в нашем небе. Иногда это видно невооруженным глазом, но во многих случаях это можно увидеть только через фильтр. Большинство из этих видео не оказываются подделкой. Не понятно как они могли появиться. Я пытался также увидеть второй яркий объект в небе. Я пытался блокировать солнце двумя парами очков. В дни, когда облачный покров достаточно плотный, чтобы сделать видимым солнечный диск, не повреждая глаз, я заметил, что он, кажется, одиноким. Но есть еще так много видео, что это явление по-прежнему представляется возможным, если не вероятным. Зададимся вопросом, для чего поддельные видео кто-то создает и выставляет в Интернет? Одним из объяснений может быть то, что кто-то, очень сильный, хочет мягко облегчить коллективное человеческое приятие второго солнца.

Two suns photo courtesy Cameron Wright
December 9, 2012 | Queensland, Australia

Конечно, они, вероятно, не являются подделкой. Я это говорю, не потому, что видео нельзя подделать. Я говорю это потому, что изображение, размещенное чуть выше, представлено на моей собственной страничке facebook другом Камерон Райт из Квинсленда, Австралия. Он сам сделал эту фотографию. Если само небо не является подделкой, конечно. Данные фотографии и видео являются подлинными явлениями, отражающими происходящее. И они сделаны совсем недавно, в течение последних 24 часов!

Звезды являются самыми горячими объектами не только в Солнечной системе, но и во всей Вселенной. Внутри них постоянно происходят термоядерные реакции, и в результате этих реакций происходит выброс большого количества энергии. Температура звезд достигает гигантских значений - от 2 до 60 тыс. градусов по Цельсию. Однако не все звезды похожи друг на друга. Существуют и другие, гораздо более холодные звезды.

К какому классу объектов относятся бурые карлики?

Коричневые карлики - одни из самых загадочных объектов Вселенной. Звезды, вес которых в 10 раз меньше Солнца, относятся к категории красных карликов. Но ни один ученый не допустит и мысли о том, что красный карлик не является звездой. А в середине 1990-х годов астрономы нашли объекты, которые были названы «черными призраками». Они обладали гигантскими размерами и внушительной гравитацией.

Измерение массы

Планета, с массой которой обычно сравнивается вес коричневого карлика, - Юпитер. Существуют бурые карлики, которые в 12 раз превосходят по своим размерам эту планету. Относить их к звездам ученые затрудняются. Но и планетой такой огромный объект назвать никак нельзя. В настоящее время астрономы активно обсуждают вопрос о том, стоит ли относить газовые гиганты и бурые карлики к разным категориям (напомним, что планета Юпитер является газовым гигантом).

Бурые карлики превосходят по своим размерам в несколько десятков раз Юпитер, но при этом в «черные призраки» приблизительно в сто раз меньше Солнца. Другое название коричневых карликов - бурые карлики. Несмотря на то что в науке принято их называть субзвездными объектами, однако они все же являются звездами, хотя и обладают весьма необычными свойствами.

Первые предположения

Впервые астрономы стали говорить об этом типе объектов в 1960-х годах. Однако ни одно предположение об их существовании не было подтверждено. Многие амбициозные ученые были заинтригованы, и начали усиленно изучать ближайшие окрестности Вселенной, пытаясь найти подобные объекты. Но в течение целых 35 лет никто так и не смог найти объект, хотя бы отдаленно напоминающий коричневый карлик. Однако такой исход событий был вполне закономерен - ведь этот тип звезд не излучает собственного света, либо его светимость настолько мала, что его попросту невозможно заметить. Кроме того, наземные телескопы имеют достаточно низкую чувствительность, чтобы замечать объекты подобного рода.

Свойства бурых карликов

Коричневых карликов астрономы не могут причислить ни к категории планет, ни к категории звезд. Самое простое определение будет таким: "тип несовершенных звезд". Они очень плохо росли, едва смогли достичь по своему весу определенного показателя, при котором внутри них начались бы процессы термоядерных реакций, благодаря которым обычные звезды сияют на небосклоне. Именно поэтому коричневые карлики не являются источником света и тепла. Астрономам чрезвычайно тяжело определить их местоположение.

Однако у ученых всегда есть несколько секретов, которыми они могут воспользоваться. Например, в спектре свечения коричневых карликов всегда присутствуют следы лития. Этот металл часто используется в различных видах промышленности, например, в производстве батареек. Но в космическом пространстве литий встречается редко, потому как легко распадается в таких условиях. Однако этот металл является типичным для бурых карликов.

Атмосфера холодных звезд

Еще одним признаком, по которому можно определить местонахождение таких звезд - это наличие метана. Этот газ не может накапливаться на обычных звездах из-за их высоких температур. Однако коричневые карлики относительно холодны, и поэтому метан легко накапливается в их атмосфере. Метановая атмосфера такого типа звезд является очень плотной.

На их поверхности бушуют неистовые ветры, и сюда никогда не проникают лучи других звезд, соответственно, погода никогда не бывает благоприятной. Поэтому на фото коричневые карлики выглядят негостеприимно. Исследователи космоса никогда не приближаются к этим звездам.

Посадить корабль на их поверхность невозможно. Сила их тяжести настолько чудовищна, что астронавты сразу же погибли бы в ее тисках еще до того, как корабль превратился бы в груду металла.

Многие из бурых карликов активно формируют около себя газопылевые облака, из которых, в свою очередь, формируются планеты. Такая планетная система недавно была обнаружена в созвездии Хамелеона.

Ближайший объект

А в 2014 году все астрономические журналы пестрили заголовками: «В окрестностях солнечной системы найден коричневый карлик». Бурому карлику было присвоено название WISE J085510.83-071442.5. Он расположен на расстоянии приблизительно в 7,2 световых годах от Солнца. Для сравнения: наиболее близкая к нам система - это Альфа Центавра, и находится она в 4 световых годах от планеты Земля. Масса этого бурого карлика была оценена учеными приблизительно. Считается, что данный объект в 3-10 раз больше планеты Юпитер. Некоторые астрономы предполагают, что с такой массой бурый карлик когда-то мог относиться к категории газовых гигантов, который со временем был выброшен за границы Солнечной системы.

Однако большинство исследователей все же склонны полагать, что этот объект относится к группе бурых карликов. Ведь они достаточно распространены во Вселенной. В дальнейшем астрономом Кевином Луманом, который анализировал снимки этого объекта, были обнаружены еще два бурых карлика. Они находятся на расстоянии 6,5 световых лет от нашей планеты. Непосредственно в Солнечной системе других бурых карликов астрономы пока не обнаружили. Возможно, все эти открытия только предстоят в будущем.

Таинственный спутник Солнца

Существует еще одно предположение о существовании особого коричневого карлика в Солнечной системе - Немезиды. Это теоретически предполагаемая звезда, которая когда-то была «компаньоном» Солнца. Однако ученые до сих пор спорят, к какой же категории она относится - бурых, красных или белых карликов. Теория о существовании Немезиды была выдвинута для того, чтобы объяснить цикличность процесса вымирания различных биологических видов на Земле - по наблюдениям ученых, это происходило каждые 27 млрд лет.

Однако астрономы пока не нашли подтверждения существованию Немезиды. Считается, что эта звезда могла быть спутником Солнца и вращаться по более вытянутой орбите. Теория о том, что вокруг Солнца вращается еще одна звезда, была популярной в научных кругах в 70-х - 80-х годах прошлого столетия. Когда звезда приближалась к планетам, она вызывала гравитационные возмущения в их орбитах, что и могло послужить массовому вымиранию видов. Кроме того, звезда могла приносить на землю кометы из облака Оорта, сквозь которое она проходила как раз каждые 27 млрд лет.

Бурые карлики в окрестностях Солнечной системы

Не так давно астрономами недалеко от Солнечной системы была обнаружена группа сверххолодных звезд - коричневых карликов. Исследования возглавлял астроном из Монреаля Дж. Роберт. Эти открытия помогут ученым в дальнейшем определить, насколько плотно эти объекты располагаются недалеко от нашей звездной системы, а также в других близлежащих областях. Команда астронома Дж. Роберта открыла 165 коричневых карликов. Треть из этих сверххолодных звезд (этот термин означает, что температура их поверхности не превышает 2200 Кельвинов) имеет достаточно необычный химический состав. Ученые считают, что открытие большей части звезд такого типа предстоит лишь в будущем, ведь предыдущие ученые «проглядели» большое количество объектов.

Чем обширнее становятся теоретические знания и технические возможности ученых, тем больше открытий они совершают. Казалось бы, уже все объекты космоса известны и необходимо только объяснить их особенности. Однако Вселенная каждый раз при возникновении такой мысли у астрофизиков преподносит им очередной сюрприз. Часто, впрочем, такие новшества бывают предсказаны теоретически. В число подобных объектов входят коричневые карлики. До 1995 года они существовали только «на кончике пера».

Давайте знакомиться

Коричневые карлики — звезды довольно необычные. Все основные их параметры сильно отличны от характеристик привычных для нас светил, впрочем, есть и сходство. Строго говоря, коричневый карлик — субзвездный объект, он занимает промежуточное положение между собственно светилами и планетами. Эти имеют сравнительно небольшую массу — от 12,57 до 80,35 от аналогичного параметра Юпитера. В их недрах, как и в центрах других звезд, осуществляются термоядерные реакции. Отличие коричневых карликов в крайне незначительной роли водорода в этом процессе. В качестве топлива такие звезды используют дейтерий, бор, литий и бериллий. «Горючее» сравнительно быстро заканчивается, и коричневый карлик начинает остывать. После завершения этого процесса он становится планетоподобным объектом. Таким образом, коричневые карлики — звезды, никогда не попадающие на главную последовательность диаграммы Герцшпрунга—Рассела.

Невидимые странники

Эти интересные объекты отличаются еще несколькими примечательными характеристиками. Они представляют собой блуждающие звезды, не связанные с какой-либо галактикой. Теоретически подобные космические тела могут бороздить просторы космоса на протяжении многих миллионов лет. Однако одно из самых их значительных свойств — практически полное отсутствие излучения. Заметить такой объект без использования специальной аппаратуры невозможно. Подходящего оборудования у астрофизиков не было на протяжении достаточно длительного периода.

Первые открытия

Наиболее сильное излучение коричневых карликов приходится на инфракрасную спектральную область. Поиски таких следов увенчались успехом в 1995 году, когда был открыт первый подобный объект, Тейде 1. Он относится к спектральному классу М8 и располагается в скоплении Плеяд. В этом же году на расстоянии 20 от Солнца была обнаружена еще одна такая звезда, Gliese 229B. Она вращается вокруг красного карлика Gliese 229А. Открытия начали следовать одно за другим. На сегодняшний день известно более сотни коричневых карликов.

Отличия

Коричневые карлики непросто идентифицировать из-за их схожести по разным параметрам с планетами и легкими звездами. По своему радиусу они приближаются в той или иной степени к Юпитеру. Примерно одинаковая величина этого параметра сохраняется для всего диапазона масс коричневых карликов. В таких условиях становится крайне непросто отличить их от планет.

Кроме того, далеко не все карлики этого типа способны поддерживать Самые легкие из них (до 13 настолько холодны, что в их недрах невозможны даже процессы с использованием дейтерия. Наиболее массивные очень быстро (в масштабах космоса — за 10 млн лет) остывают и также становятся неспособными к поддержанию термоядерных реакций. Ученые для отличия коричневых карликов используют два основных способа. Первый из них — это измерение плотности. Коричневые карлики характеризуются примерно одинаковыми значениями радиуса и объема, а потому космическое тело с массой 10 Юпитеров и выше, вероятнее всего, относится к этому типу объектов.

Второй способ — обнаружение рентгеновского и Наличием такой заметной характеристики не могут похвастаться только коричневые карлики, температура которых опустилась до планетарного уровня (до 1000 К).

Способ отличия от легких звезд

Светило с небольшой массой — еще один объект, от которого бывает непросто отличить коричневый карлик. Что такое звезда? Это термоядерный котел, где постепенно сгорают все легкие элементы. Один из них — литий. С одной стороны, в недрах большинства звезд он достаточно быстро заканчивается. С другой — для реакции с его участием требуется сравнительно низкая температура. Получается, что объект с литиевыми линиями в спектре, вероятно, принадлежит к классу коричневых карликов. У этого метода есть свои ограничения. Литий часто присутствует в спектре молодых звезд. Кроме того, коричневые карлики могут за период в полмиллиарда лет исчерпать все запасы этого элемента.

Отличительным признаком может быть и метан. На заключительных этапах жизненного цикла коричневый карлик — звезда, температура которой позволяет накопить внушительное его количество. Другие светила не могут остыть до такого состояния.

Для различия коричневых карликов и звезд измеряют и их яркость. Светила тускнеют в конце своего существования. Карлики остывают всю «жизнь». На завершающих этапах они становятся настолько темными, что перепутать их со звездами невозможно.

Коричневые карлики: спектральный класс

Температура поверхности описываемых объектов изменяется в зависимости от массы и возраста. Возможные значения находятся в диапазоне от планетарных до характерных для наиболее холодных звезд класса М. По этим причинам для коричневых карликов первоначально было выделено два дополнительных спектральных типа — L и Т. Кроме них, в теории существовал и класс Y. На сегодняшний день его реальность подтверждена. Остановимся на характеристиках объектов каждого из классов.

Класс L

Звезды, относящиеся к первому типу из названных, отличаются от представителей предыдущего класса М присутствием полос поглощения не только оксида титана и ванадия, но и гидридов металла. Именно этот признак позволил выделить новый класс L. Также в спектре некоторых коричневых карликов, относящихся к нему, обнаружили линии щелочных металлов и йода. К 2005 году было открыто 400 подобных объектов.

Класс Т

Т-карлики характеризуются наличием в ближнем инфракрасном диапазоне полос метана. Аналогичные свойства ранее были обнаружены только у а также спутника Сатурна Титана. На смену гидридам FeH и CrH, характерным для L-карликов, в Т-классе приходят щелочные металлы, такие как натрий и калий.

По предположениям ученых подобные объекты должны обладать сравнительно малой массой — не больше 70 масс Юпитера. Коричневые Т-карлики по многим параметрам схожи с газовыми гигантами. Характерная для них температура поверхности изменяется в диапазоне от 700 до 1300 К. Если когда-то в объектив камеры попадут такие коричневые карлики, фото будет демонстрировать объекты розовато-синего цвета. Такой эффект связан с влиянием спектров натрия и калия, а также молекулярных соединений.

Класс Y

Последний спектральный класс долгое время существовал лишь в теории. Температура поверхности подобных объектов должна быть ниже 700 К, то есть 400 ºС. В видимом диапазоне не обнаруживаются такие коричневые карлики (фото сделать не получится совсем).

Однако в 2011 году американские астрофизики объявили об открытии нескольких подобных холодных объектов с температурой от 300 до 500 К. Один из них, WISE 1541-2250, находится на расстоянии 13,7 световых лет от Солнца. Другой, WISE J1828+2650, характеризуется температурой поверхности в 25 ºС.

Двойник солнца — коричневый карлик

Рассказ о столь интересных будет неполным, если не упомянуть о «Звезде смерти». Так называют гипотетически существующий двойник Солнца, по предположениям некоторых ученых располагающийся на расстоянии 50-100 астрономических единиц от него, за пределами облака Оорта. По мнению астрофизиков, предполагаемый объект составляет пару нашему светилу и проходит мимо Земли каждые 26 млн лет.

Гипотеза связана с предположением палеонтологов Дэвида Раупа и Джека Сепковски о периодическом массовом вымирании биологических видов на нашей планете. Высказано оно было в 1984 году. В целом теория довольно спорная, однако есть и доводы в ее пользу.

«Звезда смерти» — одно из вероятных объяснений таких вымираний. Подобное предположение одновременно возникло у двух разных групп астрономов. Согласно их расчетам, двойник Солнца должен двигаться по сильно вытянутой орбите. При сближении с нашим светилом она возмущает кометы, в большом количестве «населяющие» облако Оорта. В результате увеличивается количество их столкновений с Землей, что и приводит к гибели организмов.

«Звезда смерти», или Немезида, как еще ее называют, может быть коричневым, белым или красным карликом. На сегодняшний день, правда, подходящих на эту роль объектов обнаружено не было. Высказываются предположения, что в зоне облака Оорта располагается пока неизвестная планета-гигант, которая оказывает воздействие на орбиты комет. Она притягивает к себе ледяные глыбы, предотвращая тем самым их возможное столкновение с Землей, то есть действует совсем не так, как гипотетическая «Звезда смерти». Впрочем, доказательств существования планеты Тюхе (то есть сестры Немезиды) пока тоже нет.

Коричневые карлики для астрономов - сравнительно новые объекты. Еще массу сведений о них предстоит получить и проанализировать. Уже сегодня предполагается, что такие объекты могут быть компаньонами многих известных звезд. Трудности исследования и обнаружения карликов этого типа задают новую высокую планку для научного оборудования и теоретического осмысления.

Американские астрономы разрушили наше привычное представление о звездах, как о горячих объектах, открыв WD 0806-661 В – звезду, которая имеет комнатную температуру всего 30°С. «Холодная» звезда относится к классу коричневых карликов и удалена от Земли на 63 световых года.

Космический объект был обнаружен при помощи инфракрасного телескопа «Спитцер», который смог зафиксировать свечение коричневого карлика. Ученые классифицируют открытую звезду как планету, так как она в семь раз превышает массу Юпитера и вращается вокруг белого карлика. До обнаружения WD 0806-661 В класс коричневых карликов, к которому относится звезда, определяли как «горячие» звезды, температура которых невероятна высока.

Бурыми или коричневыми карликами являются субзвездные объекты, которые составляют от 13 до 80 масс Юпитера или от 0,012 до 0,0767 массы Солнца.

О том, что скрывает от нас коричневых карликов, астрофизики заговорили еще в 1960-е годы. Выдвигались теории о плотных звездоподобных телах, имеющих сравнительно небольшую массу и формирующихся из разрушающихся облаков газа. Астрофизики предполагали, и предположение оказалось верным, что зафиксировать свечение коричневых карликов возможно только в инфракрасном спектре.

Изначально подобные звезды получили определение черных карликов. Ранее ученые были уверены, что для поддержания стабильной термоядерной реакции масса звезды должна составлять 0,8 массы или превышать массу Юпитера как минимум в 80 раз. А массы темных субзвездных объектов, именно так классифицировались черные карлики, было недостаточно. Однако позже выяснилось, что звезды меньших размеров способны поддерживать термоядерную реакцию, но не способны восстанавливать потерю энергии. Это способствует быстрому охлаждению коричневых карликов и превращению их в объекты планетного типа.

Первым из обнаруженных коричневых карликов был Тейде-1, открытый в 1995 г в скоплении Плеяд. На сегодняшний день астрономам уже известно о существовании более 100 звезд такого типа, многие из которых находятся в районе Млечного Пути. Ученым удалось измерить массу таких коричневых карликов как Глизе-229В и Тейде-1 (57 и 36 масс Юпитера соответственно).

Для классификации коричневых карликов используется так называемый «литиевый тест», предложенный астрофизиком Рафаэлем Реболо. Этот метод основывается на том, что коричневые карлики, в отличие от звезд малой массы, содержат литий. А звезды, способные поддерживать термоядерную реакцию, как правило, быстро его расходуют. Литий также присутствует в атмосфере самых больших и самых молодых звезд. Но это не мешает определению коричневых карликов, так как данные объекты значительно отличаются от них размером.

Правда, по подсчетам ученых, тяжелые коричневые карлики, имеющие массу от 65 до 80 масс Юпитера, могут использовать свой литиевый запас всего за 500 миллионов лет, то есть за начальный период своего существования. Этот факт делает «литиевый тест» некомпетентным критерием для классификации подобных объектов.

Несмотря на существование тестов, всевозможных измерений и вычислений, определить является ли объект коричневым карликом или это обычная планета не так просто. Радиус карликов отличается от радиусов планет всего на 10 – 15% и приблизительно совпадает с радиусом Юпитера. Но отличие все же есть. При относительной схожести показателей радиуса и объема, коричневые карлики отличаются от планет плотностью. Поэтому, если объект превышает массу Юпитера более чем в 10 раз, то он, вероятнее всего, не является планетой. Еще одним критерием классификации коричневых карликов является выделяемые ими в процессе остывания инфракрасные и рентгеновские излучения.

И, наконец, третий критерий, по которому можно отличить коричневого карлика – это температура. Крупные звезды имеют приблизительную минимальную температуру поверхности около 4000К, а температура поверхности коричневых карликов значительно меньше и составляет от 300 до 3000К. На протяжении всего существования они находятся в постоянном процессе остывания, так как не могут поддерживать свою температуру за счет внутреннего термоядерного синтеза. Скорость потери тепла зависит от массы звезды: чем карлик массивнее, тем процесс остывания протекает медленнее.

О том, что возможно существование коричневых карликов с температурой поверхности менее 700К (400°С) ученые говорили давно. Но обнаружение настолько «холодного» карлика, как WD 0806-661 В стало сенсацией для научного мира. На данный момент звезда «комнатной» температуры единственная в данном классе, но можно сказать с долей уверенности, что далеко не последняя.

Как обидно, когда большое количество информации, выложенной на иностранных сайтах и касающейся самых новейших изобретений и научных открытий, попросту ускользает от пользователей русскоязычного интернета по причине незнания языка. А ведь так хочется быть в курсе всего происходящего. Выход есть, нужно только освоить английский язык, в том числе и разговорный английский. Получать информацию быстро, не дожидаясь перевода, что может быть удобнее?

Рассказать друзьям